Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 433-440, 2020.
Article in English | WPRIM | ID: wpr-903926

ABSTRACT

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis(Vc) is the first relay site for the orofacial nociceptive inputs via the thin myelinatedAδ and unmyelinated C primary afferent fibers. Borneol, one of the valuable timehonoredherbal ingredients in traditional Chinese medicine, is a popular treatmentfor anxiety, anesthesia, and antinociception. However, to date, little is known asto how borneol acts on the SG neurons of the Vc. To close this gap, the whole-cellpatch-clamp technique was applied to elucidate the antinociceptive mechanismresponding for the actions of borneol on the SG neurons of the Vc in mice. In thevoltage-clamp mode, holding at –60 mV, the borneol-induced non-desensitizinginward currents were not affected by tetrodotoxin, a voltage-gated Na+ channelblocker, 6-cyano-7-nitro-quinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA)glutamate receptor antagonist and DL-2-amino-5-phosphonopentanoic acid, anNMDA receptor antagonist. However, borneol-induced inward currents were partiallydecreased in the presence of picrotoxin, a -aminobutyric acid (GABA)A receptorantagonist, or strychnine, a glycine receptor antagonist, and was almost suppressedin the presence of picrotoxin and strychnine. Though borneol did not show any effecton the glycine-induced inward currents, borneol enhanced GABA-mediatedresponses. Beside, borneol enhanced the GABA-induced hyperpolarization under thecurrent-clamp mode. Altogether, we suggest that borneol contributes in part towardmediating the inhibitory GABA and glycine transmission on the SG neurons of the Vcand may serve as an herbal therapeutic for orofacial pain ailments.

2.
The Korean Journal of Physiology and Pharmacology ; : 433-440, 2020.
Article in English | WPRIM | ID: wpr-896222

ABSTRACT

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis(Vc) is the first relay site for the orofacial nociceptive inputs via the thin myelinatedAδ and unmyelinated C primary afferent fibers. Borneol, one of the valuable timehonoredherbal ingredients in traditional Chinese medicine, is a popular treatmentfor anxiety, anesthesia, and antinociception. However, to date, little is known asto how borneol acts on the SG neurons of the Vc. To close this gap, the whole-cellpatch-clamp technique was applied to elucidate the antinociceptive mechanismresponding for the actions of borneol on the SG neurons of the Vc in mice. In thevoltage-clamp mode, holding at –60 mV, the borneol-induced non-desensitizinginward currents were not affected by tetrodotoxin, a voltage-gated Na+ channelblocker, 6-cyano-7-nitro-quinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA)glutamate receptor antagonist and DL-2-amino-5-phosphonopentanoic acid, anNMDA receptor antagonist. However, borneol-induced inward currents were partiallydecreased in the presence of picrotoxin, a -aminobutyric acid (GABA)A receptorantagonist, or strychnine, a glycine receptor antagonist, and was almost suppressedin the presence of picrotoxin and strychnine. Though borneol did not show any effecton the glycine-induced inward currents, borneol enhanced GABA-mediatedresponses. Beside, borneol enhanced the GABA-induced hyperpolarization under thecurrent-clamp mode. Altogether, we suggest that borneol contributes in part towardmediating the inhibitory GABA and glycine transmission on the SG neurons of the Vcand may serve as an herbal therapeutic for orofacial pain ailments.

3.
The Korean Journal of Physiology and Pharmacology ; : 271-279, 2019.
Article in English | WPRIM | ID: wpr-761789

ABSTRACT

The lamina II, also called the substantia gelatinosa (SG), of the trigeminal subnucleus caudalis (Vc), is thought to play an essential role in the control of orofacial nociception. Glycine and serotonin (5-hydroxytryptamine, 5-HT) are the important neurotransmitters that have the individual parts on the modulation of nociceptive transmission. However, the electrophysiological effects of 5-HT on the glycine receptors on SG neurons of the Vc have not been well studied yet. For this reason, we applied the whole-cell patch clamp technique to explore the interaction of intracellular signal transduction between 5-HT and the glycine receptors on SG neurons of the Vc in mice. In nine of 13 neurons tested (69.2%), pretreatment with 5-HT potentiated glycine-induced current (I(Gly)). Firstly, we examined with a 5-HT₁ receptor agonist (8-OH-DPAT, 5-HT(1/7) agonist, co-applied with SB-269970, 5-HT₇ antagonist) and antagonist (WAY-100635), but 5-HT₁ receptor agonist did not increase IGly and in the presence of 5-HT₁ antagonist, the potentiation of 5-HT on I(Gly) still happened. However, an agonist (α-methyl-5-HT) and antagonist (ketanserin) of the 5-HT₂ receptor mimicked and inhibited the enhancing effect of 5-HT on I(Gly) in the SG neurons, respectively. We also verified the role of the 5-HT₇ receptor by using a 5-HT₇ antagonist (SB-269970) but it also did not block the enhancement of 5-HT on I(Gly). Our study demonstrated that 5-HT facilitated I(Gly) in the SG neurons of the Vc through the 5-HT₂ receptor. The interaction between 5-HT and glycine appears to have a significant role in modulating the transmission of the nociceptive pathway.


Subject(s)
Animals , Mice , Glycine , Neurons , Neurotransmitter Agents , Nociception , Patch-Clamp Techniques , Receptors, Glycine , Serotonin , Signal Transduction , Substantia Gelatinosa
4.
The Korean Journal of Physiology and Pharmacology ; : 539-546, 2018.
Article in English | WPRIM | ID: wpr-727870

ABSTRACT

Botulinum toxin type A (BoNT/A) has been used therapeutically for various conditions including dystonia, cerebral palsy, wrinkle, hyperhidrosis and pain control. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) receive orofacial nociceptive information from primary afferents and transmit the information to higher brain center. Although many studies have shown the analgesic effects of BoNT/A, the effects of BoNT/A at the central nervous system and the action mechanism are not well understood. Therefore, the effects of BoNT/A on the spontaneous postsynaptic currents (sPSCs) in the SG neurons were investigated. In whole cell voltage clamp mode, the frequency of sPSCs was increased in 18 (37.5%) neurons, decreased in 5 (10.4%) neurons and not affected in 25 (52.1%) of 48 neurons tested by BoNT/A (3 nM). Similar proportions of frequency variation of sPSCs were observed in 1 and 10 nM BoNT/A and no significant differences were observed in the relative mean frequencies of sPSCs among 1–10 nM BoNT/A. BoNT/A-induced frequency increase of sPSCs was not affected by pretreated tetrodotoxin (0.5 µM). In addition, the frequency of sIPSCs in the presence of CNQX (10 µM) and AP5 (20 µM) was increased in 10 (53%) neurons, decreased in 1 (5%) neuron and not affected in 8 (42%) of 19 neurons tested by BoNT/A (3 nM). These results demonstrate that BoNT/A increases the frequency of sIPSCs on SG neurons of the Vc at least partly and can provide an evidence for rapid action of BoNT/A at the central nervous system.


Subject(s)
Animals , Mice , 6-Cyano-7-nitroquinoxaline-2,3-dione , Botulinum Toxins , Botulinum Toxins, Type A , Brain , Central Nervous System , Cerebral Palsy , Dystonia , Hyperhidrosis , Neurons , Substantia Gelatinosa , Synaptic Potentials , Tetrodotoxin
5.
Journal of Veterinary Science ; : 172-178, 2018.
Article in English | WPRIM | ID: wpr-758803

ABSTRACT

It has been reported that Korean red ginseng (KRG), a valuable and important traditional medicine, has varied effects on the central nervous system, suggesting its activities are complicated. The paraventricular nucleus (PVN) neurons of the hypothalamus has a critical role in stress responses and hormone secretions. Although the action mechanisms of KRG on various cells and systems have been reported, the direct membrane effects of KRG on PVN neurons have not been fully described. In this study, the direct membrane effects of KRG on PVN neuronal activity were investigated by using a perforated patch-clamp in ICR mice. In gramicidin perforated patch-clamp mode, KRG extract (KRGE) induced repeatable depolarization followed by hyperpolarization of PVN neurons. The KRGE-induced responses were concentration-dependent and persisted in the presence of tetrodotoxin, a voltage sensitive Na+ channel blocker. The KRGE-induced responses were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (10 µM), a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, but not by picrotoxin, a type A gamma-aminobutyric acid receptor antagonist. The results indicate that KRG activates non-NMDA glutamate receptors of PVN neurons in mice, suggesting that KRG may be a candidate for use in regulation of stress responses by controlling autonomic nervous system and hormone secretion.


Subject(s)
Animals , Mice , 6-Cyano-7-nitroquinoxaline-2,3-dione , Autonomic Nervous System , Central Nervous System , Glutamic Acid , Gramicidin , Hypothalamus , Medicine, Traditional , Membranes , Mice, Inbred ICR , Neurons , Panax , Paraventricular Hypothalamic Nucleus , Patch-Clamp Techniques , Picrotoxin , Receptors, GABA , Receptors, Glutamate , Tetrodotoxin
6.
Journal of Veterinary Science ; : 483-491, 2018.
Article in English | WPRIM | ID: wpr-758837

ABSTRACT

The hypothalamic paraventricular nucleus (PVN) contains two types of neurons projecting to either the rostral ventrolateral medulla (PVN(RVLM)) or the intermediolateral horn (IML) of the spinal cord (PVN(IML)). These two neuron groups are intermingled in the same subdivisions of the PVN and differentially regulate sympathetic outflow. However, electrophysiological evidence supporting such functional differences is largely lacking. Herein, we compared the electrophysiological properties of these neurons by using patch-clamp and retrograde-tracing techniques. Most neurons (>70%) in both groups spontaneously fired in the cell-attached mode. When compared to the PVN(IML) neurons, the PVN(RVLM) neurons had a lower firing rate and a more irregular firing pattern (p < 0.05). The PVN(RVLM) neurons showed smaller resting membrane potential, slower rise and decay times, and greater duration of spontaneous action potentials (p < 0.05). The PVN(RVLM) neurons received greater inhibitory synaptic inputs (frequency, p < 0.05) with a shorter rise time (p < 0.05). Taken together, the results indicate that the two pre-sympathetic neurons differ in their intrinsic and extrinsic electrophysiological properties, which may explain the lower firing activity of the PVN(RVLM) neurons. The greater inhibitory synaptic inputs to the PVN(RVLM) neurons also imply that these neurons have more integrative roles in regulation of sympathetic activity.


Subject(s)
Animals , Action Potentials , Fires , Horns , Inhibitory Postsynaptic Potentials , Membrane Potentials , Neurons , Paraventricular Hypothalamic Nucleus , Patch-Clamp Techniques , Spinal Cord , Spinal Cord Lateral Horn
7.
The Korean Journal of Physiology and Pharmacology ; : 65-74, 2017.
Article in English | WPRIM | ID: wpr-728256

ABSTRACT

Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta (IL-1β) (1 ng/10 µL) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A (GABAA) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the IL-1β-induced mechanical allodynia. In the control group, application of GABA (100 µM) or muscimol (3 µM) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the IL-1β-treated rats. These results suggest that some large myelinated Aβ fibers gain access to the nociceptive system and elicit pain sensation via GABA(A) receptors under inflammatory pain conditions.


Subject(s)
Animals , Humans , Male , Rats , Bicuculline , Bumetanide , Capsaicin , gamma-Aminobutyric Acid , Gramicidin , Hyperalgesia , Injections, Subcutaneous , Interleukin-1beta , Membranes , Muscimol , Myelin Sheath , Neurons , Nociceptors , Rats, Sprague-Dawley , Receptors, GABA-A , Sensation
8.
The Korean Journal of Physiology and Pharmacology ; : 177-181, 2015.
Article in English | WPRIM | ID: wpr-728527

ABSTRACT

The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate (60~100 microM), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate (100 microM) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.


Subject(s)
Animals , Rats , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Blood-Brain Barrier , Brain , Central Nervous System , Glutamic Acid , Hippocampus , Kainic Acid , N-Methylaspartate , Neurons , Receptors, Glutamate , Subfornical Organ
9.
Neurology Asia ; : 301-307, 2014.
Article in English | WPRIM | ID: wpr-628481

ABSTRACT

Objective: Vasospasm remains the leading cause of cerebral damage after aneurysmal subarachnoid hemorrhage. Although magnesium regulates the calcium influx in vascular smooth muscle and endothelial cells, it has not been reported whether L-type calcium channels are involved in magnesiuminduced vascular relaxation in rat basilar artery. So, the effect of magnesium sulfate on L-type calcium currents in freshly isolated smooth muscle cells from rat basilar artery was investigated. Methods: The smooth muscle cells were isolated from rabbit basilar artery by enzyme treatment. L-type Ca2+ currents were identified using cesium chloride, a potassium channel blocker and Bay K8644, an activator of L-type Ca2+ channel. Currents were recorded under step pulse whole cell patch clamp technique. Results: In the presence of cesium chloride (in pipette solution), inward currents were observed by depolarizing step pulses. The inward currents were significantly reduced by nimodipine (n=4, p<0.05), an L-type Ca2+ channel blocker and increased by Bay K8644 (n=5, p<0.05), an L-type Ca2+ channel activator. The L-type calcium currents (156±17.0 pA, n=12) were significantly reduced by the application of 5 mM magnesium sulfate (53.8±7.0 pA, n=12, p<0.01). Conclusion: These results suggest that magnesium may relax cerebral vessel of rat basilar artery through decreasing intracellular Ca2+ ion by inhibition of L-type Ca2+ channels.

10.
The Korean Journal of Physiology and Pharmacology ; : 285-289, 2011.
Article in English | WPRIM | ID: wpr-728329

ABSTRACT

Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na+ channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABAA receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABAA receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing.


Subject(s)
Animals , Mice , 6-Cyano-7-nitroquinoxaline-2,3-dione , Brain Stem , Central Nervous System , Chloride Channels , Facial Pain , Gluconates , Mecamylamine , Minerals , N-Methylaspartate , Neurons , Picrotoxin , Potassium , Receptors, Glutamate , Receptors, Glycine , Receptors, Nicotinic , Resins, Plant , Strychnine , Substantia Gelatinosa , Tetrodotoxin
11.
The Korean Journal of Physiology and Pharmacology ; : 163-169, 2011.
Article in English | WPRIM | ID: wpr-727886

ABSTRACT

Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p<0.01 by chi2-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.


Subject(s)
Animals , Mice , Anterior Hypothalamic Nucleus , Brain , Corticosterone , Fires , GABAergic Neurons , Mice, Transgenic , Mifepristone , Neurons , Paraventricular Hypothalamic Nucleus , Plastics , Receptors, Glucocorticoid , Receptors, Mineralocorticoid , Receptors, Steroid , RNA, Messenger , Spironolactone , Synaptic Transmission
12.
Endocrinology and Metabolism ; : 210-217, 2011.
Article in Korean | WPRIM | ID: wpr-108690

ABSTRACT

BACKGROUND: The gonadotropin releasing hormone (GnRH) neurons perform a pivotal function in the central regulation of fertility. Somatostatin (SST) is an important neuromodulatory peptide in the central nervous system and alters neuronal activities via G protein- coupled SST receptors. A number of studies have shown that SST modulates the reproductive axis at the hypothalamic level. However, the precise action mechanisms of SST and related receptor subtypes have yet to be fully understood. In this study, we evaluated the direct effects of SST on GnRH neurons in juvenile mice. METHODS: Juvenile (postnatal days, < PND 30) GnRH-GFP transgenic mice expressing green fluorescent protein were used in this study. Acute coronal brain slices containing the preoptic area were prepared and all identified GnRH neurons were recorded using the gramicidin perforated-patch clamp technique; type II SST receptor (SSTR2) mRNA expression was evaluated via single cell reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: SST caused membrane hyperpolarization, depolarization, no response, or membrane hyperpolarization with a reduction of action potential. Most (57.7%, 30/52) of the GnRH neurons tested were hyperpolarized by SST and this SST-induced hyperpolarization was found to be concentration-dependent. The percentage of responses, membrane potential changes (MPC), and resting membrane potential (RMP) by SST were not significantly different in juvenile male and female GnRH neurons. The SST-induced hyperpolarization was maintained in the presence of tetrodotoxin (TTX), a sodium channel blocker, and an amino acid blocking cocktail (AABC) containing AP-5 (NMDA receptor antagonist), CNQX (non-NMDA glutamate receptor antagonist), picrotoxin (GABAA receptor antagonist), and strychnine (glycine receptor antagonist). SSTR2 mRNA was expressed on 10 (38%) among 26 GnRH neurons. Seglitide, an SSTR2 agonist, mimicked this SST-induced hyperpolarization (11/23 47.8%) and this response was maintained in the presence of TTX and AABC. CONCLUSION: Our data show that SST can exert potent inhibitory action against GnRH neuronal excitability via SSTR2 activation in juvenile mice.


Subject(s)
Animals , Female , Humans , Male , Mice , 6-Cyano-7-nitroquinoxaline-2,3-dione , Action Potentials , Brain , Central Nervous System , Fertility , Gonadotropin-Releasing Hormone , Gonadotropins , Gramicidin , Membrane Potentials , Membranes , Mice, Transgenic , Neurons , Peptides, Cyclic , Picrotoxin , Preoptic Area , Receptors, Glutamate , RNA, Messenger , Sodium Channels , Somatostatin , Strychnine , Tetrodotoxin , Axis, Cervical Vertebra
13.
Korean Journal of Pediatrics ; : 845-851, 2010.
Article in English | WPRIM | ID: wpr-130962

ABSTRACT

PURPOSE: Recombinant human growth hormone (rhGH) has been widely used to treat short stature. However, there are some concerns that growth hormone treatment may induce skeletal maturation and early onset of puberty. In this study, we investigated whether rhGH can directly affect the neuronal activities of of gonadotropin-releasing hormone (GnRH). METHODS: We performed brain slice gramicidin-perforated current clamp recording to examine the direct membrane effects of rhGH on GnRH neurons, and a whole-cell voltage-clamp recording to examine the effects of rhGH on spontaneous postsynaptic events and holding currents in immature (postnatal days 13-21) and adult (postnatal days 42-73) mice. RESULTS: In immature mice, all 5 GnRH neurons recorded in gramicidin-perforated current clamp mode showed no membrane potential changes on application of rhGH (0.4, 1 microgram/mL). In adult GnRH neurons, 7 (78%) of 9 neurons tested showed no response to rhGH (0.2-1 microgram/mL) and 2 neurons showed slight depolarization. In 9 (90%) of 10 immature neurons tested, rhGH did not induce any membrane holding current changes or spontaneous postsynaptic currents (sPSCs). There was no change in sPSCs and holding current in 4 of 5 adult GnRH neurons. CONCLUSION: These findings demonstrate that rhGH does not directly affect the GnRH neuronal activities in our experimental model.


Subject(s)
Adult , Animals , Humans , Mice , Brain , Gonadotropin-Releasing Hormone , Growth Hormone , Human Growth Hormone , Membrane Potentials , Membranes , Models, Theoretical , Neurons , Puberty , Synaptic Potentials
14.
Korean Journal of Pediatrics ; : 845-851, 2010.
Article in English | WPRIM | ID: wpr-130959

ABSTRACT

PURPOSE: Recombinant human growth hormone (rhGH) has been widely used to treat short stature. However, there are some concerns that growth hormone treatment may induce skeletal maturation and early onset of puberty. In this study, we investigated whether rhGH can directly affect the neuronal activities of of gonadotropin-releasing hormone (GnRH). METHODS: We performed brain slice gramicidin-perforated current clamp recording to examine the direct membrane effects of rhGH on GnRH neurons, and a whole-cell voltage-clamp recording to examine the effects of rhGH on spontaneous postsynaptic events and holding currents in immature (postnatal days 13-21) and adult (postnatal days 42-73) mice. RESULTS: In immature mice, all 5 GnRH neurons recorded in gramicidin-perforated current clamp mode showed no membrane potential changes on application of rhGH (0.4, 1 microgram/mL). In adult GnRH neurons, 7 (78%) of 9 neurons tested showed no response to rhGH (0.2-1 microgram/mL) and 2 neurons showed slight depolarization. In 9 (90%) of 10 immature neurons tested, rhGH did not induce any membrane holding current changes or spontaneous postsynaptic currents (sPSCs). There was no change in sPSCs and holding current in 4 of 5 adult GnRH neurons. CONCLUSION: These findings demonstrate that rhGH does not directly affect the GnRH neuronal activities in our experimental model.


Subject(s)
Adult , Animals , Humans , Mice , Brain , Gonadotropin-Releasing Hormone , Growth Hormone , Human Growth Hormone , Membrane Potentials , Membranes , Models, Theoretical , Neurons , Puberty , Synaptic Potentials
15.
Journal of Veterinary Science ; : 299-304, 2010.
Article in English | WPRIM | ID: wpr-197699

ABSTRACT

The KA1 kainate receptor (KAR) subunit in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been implicated in the processing of nociceptive information from the orofacial region. This study compared the expression of the KA1 KAR subunit in the SG of the Vc in juvenile, prepubescent and adult mice. RT-PCR, Western blot and immunohistochemistry analyses were used to examine the expression level in SG area. The expression levels of the KA1 KAR subunit mRNA and protein were higher in juvenile mice than in prepubescent or adult mice. Quantitative data revealed that the KA1 KAR subunit mRNA and protein were expressed at levels approximately two and three times higher, respectively, in juvenile mice than in adult mice. A similar expression pattern of the KA1 KAR subunit was observed in an immunohistochemical study that showed higher expression in the juvenile (59%) than those of adult (35%) mice. These results show that the KA1 KAR subunits are expressed in the SG of the Vc in mice and that the expression level of the KA1 KAR subunit decreases gradually with postnatal development. These findings suggest that age-dependent KA1 KAR subunit expression can be a potential mechanism of age-dependent pain perception.


Subject(s)
Animals , Mice , Age Factors , Gene Expression Profiling , Gene Expression Regulation, Developmental , Receptors, Kainic Acid/metabolism , Substantia Gelatinosa/metabolism
16.
Journal of Korean Society of Endocrinology ; : 672-683, 2000.
Article in Korean | WPRIM | ID: wpr-58100

ABSTRACT

No Abstract Available.


Subject(s)
Electrophysiology , Neuroendocrine Cells
SELECTION OF CITATIONS
SEARCH DETAIL